Modern multiple imputation with functional data

نویسندگان

چکیده

This work considers the problem of fitting functional models with sparsely and irregularly sampled data. It overcomes limitations state-of-the-art methods, which face major challenges in more complex non-linear models. Currently, many these cannot be consistently estimated unless number observed points per curve grows sufficiently quickly sample size, whereas, we show numerically that a modified approach modern multiple imputation methods can produce better estimates general. We also propose new combines ideas {\it MissForest} Local Linear Forest} compare their performance PACE} several other multivariate methods. is motivated by longitudinal study on smoking cessation, Electronic Health Records (EHR) from Penn State PaTH to allow for collection great deal data, highly variable sampling. To illustrate our approach, explore relation between relapse diastolic blood pressure. consider variety simulation schemes varying levels sparsity validate

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple imputation: dealing with missing data.

In many fields, including the field of nephrology, missing data are unfortunately an unavoidable problem in clinical/epidemiological research. The most common methods for dealing with missing data are complete case analysis-excluding patients with missing data--mean substitution--replacing missing values of a variable with the average of known values for that variable-and last observation carri...

متن کامل

A functional multiple imputation approach to incomplete longitudinal data.

In designed longitudinal studies, information from the same set of subjects are collected repeatedly over time. The longitudinal measurements are often subject to missing data which impose an analytic challenge. We propose a functional multiple imputation approach modeling longitudinal response profiles as smooth curves of time under a functional mixed effects model. We develop a Gibbs sampling...

متن کامل

Multiple Imputation for Missing Data

Multiple imputation provides a useful strategy for dealing with data sets with missing values. Instead of filling in a single value for each missing value, Rubin’s (1987) multiple imputation procedure replaces each missing value with a set of plausible values that represent the uncertainty about the right value to impute. These multiply imputed data sets are then analyzed by using standard proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stat

سال: 2021

ISSN: ['2049-1573']

DOI: https://doi.org/10.1002/sta4.331